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Abstract. Originally developed for the Moderate Resolution Imaging Spectroradiometer (MODIS) in polar, sun-synchronous 10 

low-earth orbit (LEO), the Dark Target (DT) aerosol retrieval algorithm relies on the assumption of a Surface Reflectance 

Parameterization (SRP) over land surfaces. Specifically for vegetated and dark-soiled surfaces, values of surface reflectance 

in blue and red visible-wavelength bands are assumed to be nearly linearly related to each other and to the value in a shortwave 

infrared (SWIR) wavelength band.  This SRP also includes dependencies on scattering angle and a normalized difference 

vegetation index computed from two SWIR bands (NDVISWIR).  As the DT retrieval algorithm is being ported to new sensors 15 

to continue and expand the aerosol data record, we assess whether the MODIS-assumed SRP can be used for these sensors. 

Here, we specifically assess SRP for the Advanced Baseline Imager (ABI) aboard, the Geostationary Operational 

Environmental Satellite (GOES)-16/East (ABIE).   First, we find that using MODIS-based SRP leads to higher biases and 

artificial diurnal signatures in aerosol optical depth (AOD) retrievals from ABIE. The primary reason appears to be that 

geostationary orbit (GEO) encounters an entirely different set of observation geometry than does LEO, primarily with regards 20 

to solar angles coupled with fixed view angles. Therefore, we have developed a new SRP for GEO that draws the angular 

shape of the surface bidirectional reflectance. We also introduce modifications to the parametrization of both red-SWIR and 

blue-red spectral relationships to include additional information. The revised Red-SWIR SRP includes solar zenith angle, 

NDVISWIR, and land-type percentage from an ancillary database.  The blue-red SRP adds dependencies on the scattering angle 

and NDVISWIR. The new SRPs improve the AOD retrieval of ABIE in terms of overall less bias and mitigation of the 25 

overestimation around local noon. The average bias of DT AOD compared to AERONET AOD shows a reduction from 0.082 

to 0.025, while the bias of local solar noon decreases from 0.118 to 0.029. 

1. Introduction 

Aerosols in the atmosphere strongly influence the Earth’s energy budget by absorbing and scattering solar radiation, and by 

acting as cloud condensation nuclei and ice nuclei to alter cloud micro- and macrophysics (Boucher et al., 2014). They also 30 
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play an important role in global atmospheric chemistry and the biogeochemical cycle (Kanakidou et al., 2018), and affect local 

air quality as particulate matter. Satellite remote sensing is beneficial to monitor atmospheric aerosol on the global scale. Broad 

coverage allows capturing widespread distribution and long-range transport of aerosol (Yu et al., 2013), and can help determine 

aerosol effects on climate and air quality.  

Taking advantage of satellite observations, numerous efforts have been made to infer global distributions of aerosol optical 35 

properties. The procedure to infer aerosol loading and characteristics over ocean takes advantage of the relatively well-known 

surface reflectance properties of the ocean surface.  Land surface variability makes it much more difficult to do the same over 

land with its hard to predict dynamic surface reflectance. Over 25 years ago, Kaufman and Remer (1994) and Kaufman et al. 

(1997b) noted that for vegetation and dark-soiled surfaces, the land surface reflectance in some visible (VIS) wavelengths 

were highly correlated with each other, and also with values measured in some shortwave infrared (SWIR) wavelengths. This 40 

led to an aerosol retrieval approach over land used for MODIS (e.g., Kaufman et al., 1997a), for which after modifications is 

known as the ‘Dark Target (DT) aerosol algorithm’ (Remer et al., 2008, 2005; Levy et al., 2013, 2007a, b, 2010, 2013).   

In the original version (Kaufman et al., 1997a), the surface reflectance parameterization (SRP) assumed that the values in the 

0.47 µm blue and the 0.65 µm red bands were set to be ¼ and ½ the values in the 2.11 µm SWIR band.  With the current 

MODIS version, instead of simple ratios, the spectral relationship includes the slopes and intercepts of their regressions. In 45 

addition, the current SRP includes dependencies on scene identification. It was noted during the first years of MODIS on-orbit 

data collection that bidirectional reflectance introduced angular dependencies in the SRPs, and these dependencies were 

parameterized in subsequent algorithm versions as a function of scattering angle (Levy et al., 2007b; Remer et al., 2001). This 

DT retrieval algorithm has led to derivation of a 20+ yearlong AOD record that has an outstanding performance and relied on 

by an extensive user community. Highly accurate aerosol products of the DT algorithm have not only contributed to improving 50 

theoretical understanding about the role of aerosols in radiation and climate (e.g., Boucher et al., 2014), but they have also 

been used for monitoring surface air quality (e.g., Al-Saadi et al., 2005; Chu et al., 2003) and a variety of other applications 

(Remer et al., 2020).  

In order to continue the aerosol data record after the decommissioning of the MODIS missions on both Terra and Aqua, the 

DT algorithm is being ported to other sensors. For example, Sawyer et al., (2020) discuss porting DT to the Visible-infrared 55 

Radiometer Suite (VIIRS) which is also on polar-orbiting satellites in Low Earth Orbit (LEO). Yet, as geostationary orbit 

(GEO) sensors now include the capability to measure both visible and SWIR reflectance, the DT algorithm can also be adapted 

to advanced imagers in GEO, such as the Advanced Himawari Imager (AHI) on board the Japanese HIMAWARI-8 satellite 

and the Advanced Baseline Imager (ABI) on board National Oceanic and Atmospheric Administration’s (NOAA) operational 

Geostationary Operational Environmental Satellite (GOES) series. Continuous imaging by GEO satellites is valuable to 60 

capture diurnal variations of aerosol occurring with human activity cycles, outbreak of emission episodes, and long-range 

transport (Kim et al., 2020).  

Although the new advanced imagers observe a similar spectral range (visible through thermal infrared) as MODIS, there are 

generally fewer bands in total, and the wavelength range of analogous bands are shifted. Levy et al. (2015) and Sawyer et al. 
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(2020) showed that with minimal change to SRP and slight adjustments for wavelength band, one could derive a VIIRS AOD 65 

product that had error/bias statistics similar to the MODIS product. Presumably, only small changes were necessary because 

VIIRS offers similar observing geometry to MODIS (i.e., both MODIS and VIIRS pass over the equator ±1.5 hours around 

noon).   

However, because there are much larger differences in ground sampling and viewing geometry between LEO and GEO, the 

SRPs optimized for MODIS or similar LEO sensors do not appear be appropriate for GEO. For example, Gupta et al. (2019) 70 

finds biases in a similar DT-algorithm applied to AHI on Himawari-8. Also, when analyzing NOAA’s aerosol products created 

from ABI in the GOES-East position (e.g. ABIE), Zhang et al. (2020) showed the need for an empirical correction to improve 

mean bias and Root Mean Squared Error (RMSE).  

The DT algorithm is also being ported to ABI and will be used to test a GEO-LEO synergy concept 

(https://www.earthdata.nasa.gov/esds/competitive-programs/measures/leo-geo-synergy). This initial (baseline) version of 75 

ABI’s DT-algorithm accounts for shifted wavelengths in calculating aerosol/Raleigh lookup tables and cloud masking. 

However, this baseline version assumes the values of the MODIS SRP, with no modifications for the GEO’s very different 

observation of Earth’s surface (regional versus global), and geometry (each site from a fixed sensor view, but widely varying 

solar angles).  

Therefore, assuming that biases in retrievals may be due, at least in part, to GEO’s sampling, we use strategies laid out by 80 

Levy et al. (2007b), and focus on GOES -16 ABI (ABI East, ABIE). We derive the atmospherically corrected spectral 

reflectance (AC-ref) and investigate its angular variation and the variation of land cover type. The result is a new SRP, and we 

test this new SRP on ABI data and compare the aerosol results with the baseline (assumed MODIS SRP).  

This manuscript is organized as follows. Section 2 introduces the original DT algorithm for MODIS and a baseline for GEO 

sensors. Section 3 compares GEO ABI and LEO MODIS observations from perspective of geometric differences and identifies 85 

an issue in the baseline AOD retrieval from GEO. Methodologies and input datasets for the atmospheric correction calculation 

are described in Sect. 4, and an investigation of new SRP is conducted in Sect. 5. Section 6 presents the performance of the 

new SRP and compares the newly retrieved GEO AOD with AOD from Aerosol Robotic Network (AERONET). A discussion 

and conclusion are presented in Sect. 7 and Sect. 8, respectively.  

2. Data and Methodology 90 

2.1 MODIS Dark Target aerosol retrieval algorithm and products 

MODIS, aboard the Terra and Aqua sun-synchronous polar-orbiting satellites, measures radiance of Earth-viewing scenes in 

36 spectral bands spanning the deep blue at 0.41 µm to thermal infrared (TIR) at 14 µm. Each MODIS obtains near-global 

coverage twice a day, once during daytime and once at night at nominal spatial resolutions of 0.25 to 1.0 km, providing 

geolocated, calibrated spectral radiances known as the Level 1B data. The MODIS DT aerosol algorithm uses subsets of the 95 
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spectral bands and follows separate logic to derive aerosol properties over land and the ocean. Although both land and ocean 

retrievals are based on a Look Up Table (LUT) inversion approach, each uses its own set of assumptions for estimating surface 

reflectance (SR) and aerosol optical models. This study focuses on the over-land part of the DT algorithm, specifically the 

assumptions of the SRP. Details of the DT land algorithm are well described online (https://darktarget.gsfc.nasa.gov/) and 

previous DT algorithm studies (Levy et al., 2007b, 2010, 2013; Gupta et al., 2016; Remer et al., 2005), but we summarize 100 

here.  

Radiance from the sun is absorbed and reflected by constituents of the atmosphere and the surface. The satellite observes some 

of that signal at the theoretical top-of-atmosphere (TOA). To retrieve the aerosol characteristics, the signal from the atmosphere 

must be separated from the signal originating from the land surface beneath. The unique aspect of the DT algorithm lies in 

how the algorithm assumes the surface reflectance to make that separation – and the assumptions about the surface are known 105 

as the SRP.  

Vermote et al. (1997) describe the process of atmospheric correction (AC), which essentially “subtracts” the constituents of 

the atmosphere from the TOA signal, given the knowledge of atmospheric properties such as molecular scattering and aerosol 

properties. Prior to launch of Terra, Kaufman et al. (1997a) performed AC using proxy MODIS measurements from existing 

satellite and low-flying aircraft. They showed there were near-linear relationships of SR values in the blue, red and SWIR 110 

wavelength bands over natural surfaces such as vegetation and dark soils. Specifically, they found that the value of surface 

reflectance in the blue (e.g. 0.47 μm) and red (0.65 μm) wavelengths were approximately ¼ and ½ of the surface reflectance 

in the SWIR (2.11 μm), respectively, and that these ratios were invariant of solar/sensor/scattering geometry. Physically, this 

relationship was expected based on the relative balance between absorption of visible radiation by chlorophyll versus 

absorption of SWIR radiation by the water within the vegetation.  115 

Kaufman et al. (1997b) realized that these observed relationships defined an SRP, to be used as a constraint during the aerosol 

retrieval.  Since aerosol (especially fine-sized particles indicative of anthropogenic or burning processes) is often nearly 

transparent at 2.11μm, MODIS essentially observes the 2.11 μm surface reflectance. That initial estimate of 2.11 μm surface 

reflectance leads to an easy estimate of the 0.47 and 0.65 μm surface reflectance. As a result, the aerosol contribution (and 

derivation of aerosol optical depth) is related to the difference between the estimated surface and the observed TOA reflectance 120 

at 0.47 and 0.65 μm. This SRP (blue = ¼ of SWIR, red = ½ of SWIR), was coded into the at-launch MODIS algorithm 

(Kaufman et al., 1997a; Remer et al., 2005).  

Although the initial MODIS aerosol product compared well to sunphotometer (Chu et al., 2002; Remer et al., 2005), Levy et 

al. (2005) found some systematic biases that suggested revisiting SRP. By then, there were more ground-based sunphotometers 

and multiple years of MODIS observations, so that global AC was expected to yield new information.  The result was when 125 

regressing blue, red, and SWIR values, best-fit slopes were different from the original ratios, and there were non-zero y-offsets.  

Furthermore, variability of the blue/red and red/SWIR y-offsets and slopes appeared to depend on observing geometry and 

surface type (Levy et al., 2007b). As a result, the current version of the MODIS-DT algorithm includes SRPs which also 
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depend on scattering angle (Θ) and surface “greenness” in the form of a Normalized Difference Vegetation Index based on 

two SWIR channels (2.11 μm and 1.24 μm)  130 

𝑁𝐷𝑉𝐼!"#$ 	= 	 (𝜌%.'() 	– 𝜌'.%%) )/	(𝜌%.'() + 𝜌'.%%) ),        (1) 

where 𝜌%.'()  and 𝜌'.%%)
 are the measured top-of-atmosphere reflectances in the 1.24 µm and 2.11 µm wavelengths, respectively. 

The current version of the algorithm (e.g., MODIS Collection 6.1) uses SRPs as follows:   

𝜌$*+, = 𝜌!"#$, × 𝑠𝑙𝑜𝑝𝑒$*+!"#$ + 𝑦𝑖𝑛𝑡$*+!"#$, 

𝜌-./*, = 𝜌$*+, × 𝑠𝑙𝑜𝑝𝑒-./*$*+ + 𝑦𝑖𝑛𝑡-./*$*+,         (2) 135 

where, 

𝑆𝑙𝑜𝑝𝑒$*+!"#$ = 𝑠𝑙𝑜𝑝𝑒$*+!"#$
012#!"#$ + 0.002𝛩 − 0.27, 

𝑦𝑖𝑛𝑡$*+!"#$ = −0.00025𝛩 + 0.033, 𝑠𝑙𝑜𝑝𝑒-./*$*+ = 0.49	, 

𝑎𝑛𝑑	𝑦𝑖𝑛𝑡-./*$*+ = 0.005,           (3) 

where in turn  140 

𝑠𝑙𝑜𝑝𝑒$*+!"#$
012#!"#$ = 0.58,𝑁𝐷𝑉𝐼!"#$ < 0.25, 

𝑠𝑙𝑜𝑝𝑒$*+!"#$
012#!"#$ = 0.48,𝑁𝐷𝑉𝐼!"#$ > 0.75	, 

𝑠𝑙𝑜𝑝𝑒$*+!"#$
012#!"#$ = 0.58 − 0.2(	𝑁𝐷𝑉𝐼!"#$ − 0.25), 0.25 ≤ 𝑁𝐷𝑉𝐼!"#$ ≤ 0.75	.     (4) 

The scattering angle (Θ) is defined as 

𝛩 = 𝑐𝑜𝑠3%(−𝑐𝑜𝑠𝜃4𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃4𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑),        (5) 145 

where 𝜃4, 𝜃, and 𝜑 are the solar zenith angle (SZA), viewing zenith angle (VZA), and relative azimuth angles (difference 

between solar and sensor azimuth angles, RAA), respectively.  

For Collection 6.1 of the MODIS product, Gupta et al., (2016) added a correction to the  𝑠𝑙𝑜𝑝𝑒$*+!"#$
012#!"#$ and 𝑦𝑖𝑛𝑡$*+!"#$

012#!"#$ to 

account for an urban surface. The urban correction takes into account the pixels with urban percentage (UP) larger than 20% 

as follows:  150 

Where 𝑁𝐷𝑉𝐼!"#$ < 0.20 

𝑠𝑙𝑜𝑝𝑒$*+!"#$
012#!"#$ = 0.78	𝑎𝑛𝑑	𝑦𝑖𝑛𝑡$*+!"#$

012#!"#$ = −0.02, 20	% ≤ 𝑈𝑃 < 50%	, 

𝑠𝑙𝑜𝑝𝑒$*+!"#$
012#!"#$ = 0.66	𝑎𝑛𝑑	𝑦𝑖𝑛𝑡$*+!"#$

012#!"#$ = 0.02, 𝑈𝑃 ≥ 50%,      (6) 

and where 𝑁𝐷𝑉𝐼!"#$ ≥ 0.20  

𝑠𝑙𝑜𝑝𝑒$*+!"#$
012#!"#$ = 0.62	𝑎𝑛𝑑	𝑦𝑖𝑛𝑡$*+!"#$

012#!"#$ = 0.0, 20% ≤ 𝑈𝑃 < 70%, 155 

𝑠𝑙𝑜𝑝𝑒$*+!"#$
012#!"#$ = 0.65	𝑎𝑛𝑑	𝑦𝑖𝑛𝑡$*+!"#$

012#!"#$ = 0.0, 𝑈𝑃 ≥ 70%.       (7) 

The Urban Percentage is defined as the percentage of pixels (500m) identified as urban land cover type, MCD12Q1). The 

dataset of land cover type will be introduced in Sect. 2.4.  

This SRP is used as a constraint within the DT retrieval algorithm. The rest of the retrieval algorithm can be summarized by 

the following steps A-C:   160 
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A. Prior to any retrieval, there exists a set of pre-computed aerosol/atmospheric properties known as LUTs. These LUTs 

are derived using radiative transfer (RT) code (Evans and Stephens, 1991) and represent the atmospheric portion 

(aerosol plus molecular) of the TOA signal. Spectral TOA reflectances are computed for different loadings of each 

of these aerosol “types” (or models) (indexed by AOD at 0.55 µm), and combinations of solar and satellite zenith (θ0 165 

and θ) and relative azimuth angles (φ). There are five distinct aerosol types represented based on assumed size 

distributions, shape characteristics, and spectral complex refractive indices. Vertical profiles for aerosols compared 

to molecular/Rayleigh scattering is also assumed.  Details on aerosol model assumptions for LUT calculation and DT 

retrieval process are in Levy et al. (2007a) and Levy et al. (2013). For MODIS, LUTs are calculated for the green 

(e.g., 0.55 µm) in addition to the blue, red, and SWIR bands.   170 

B. Using the observed L1B spectral reflectance and radiance data, the DT algorithm takes several steps for pre-

processing and data aggregation. These steps include aggregating into N × N boxes of native pixels (e.g., 20 × 20 

boxes of 0.5 km native pixels to make 10 km × 10 km), masking (removing) pixels that appear to be clouds, in-land 

water bodies, and snow/ice, correcting for trace-gas absorptions (Patadia et al., 2018), and calculating statistics (mean, 

standard deviation) of the corrected, non-masked pixels in the box. We denote this cleaned reflectance as the 175 

‘Mean_Reflectance_Land’.  

C. Based on ground-based climatology, one of the three choices for fine-dominated model (“weakly-absorbing fine-

dominated’, “moderately-absorbing fine-dominated”, “strongly-absorbing fine-dominated”) is prescribed by location 

and season, with the chosen value being known as ‘Aerosol_Type_Land’. The algorithm subsets the LUT, pulling 

out the portion representing the observed geometry for the prescribed Aerosol_Type_Land and the “dust-like coarse-180 

dominated” models. Armed with the SRP of Eq. (1-5), the retrieval attempts to search this subsetted LUT for a linear 

combination of the prescribed aerosol types that best matches the Mean_Reflectance_Land vector.  The solution leads 

to a derivation of the total aerosol AOD (at 0.55 µm), the spectral AOD (in the blue, red, and SWIR bands), and a 

weighting of the non-dust model to the total known as the ‘Fine_Model_Fraction’ (FMF).  A by-product (diagnostic) 

of this process is the spectral surface reflectance meeting the SRP known as the ‘Surface_Reflectance_Land’.   185 

 

The collection of derived aerosol properties and diagnostic variables is contained within the archived MODIS “Level 2” (L2) 

product known as MOD04 for MODIS on Terra and MYD04 for MODIS on Aqua the values of the variables calculated in 

Steps A-C are written to the file. Here, we are interested in the vectors of the TOA Mean_Reflectance_Land (plotted as 

“MODIS Level 2 TOA reflectance”), derived spectral AOD (reported as ‘Corrected_Optical_Depth_Land’) and fine model 190 

fraction (‘Optical_Depth_Ratio_Small_Land’), as well as the diagnostic Surface_Reflectance_Land.  

The current assumptions for MODIS_SRP were derived by performing AC of the Mean_Reflectance_Land vector over 

globally distributed AERONET sites. Even though we confirmed the basic SRP for use in Collection 6.1 (e.g., Levy et al., 

2013), there have been both increases in AERONET coverage as well as a much larger dataset of Mean_Reflectance_Land.  
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Yet, the ABIs are regional in coverage, which means that only a subset of global AERONET sites can be observed by any 195 

single ABI.  Therefore, to compare with the ABI datasets described in the next section, we perform AC on the subset of the 

AERONET sites that are observed by the corresponding ABI. We also constrain this analysis to the MODIS data between 

2015-2019, which better matches the AERONET coverage observed by each ABI during 2019. Single wavelength outputs 

from this exercise are known as AC-ref, which will be regressed to derive the SRP. Section 2.3 introduces AERONET data 

and a description of its collocation with ABI observations. 200 

2.2 ABI and Baseline Dark Target aerosol retrieval algorithm  

The ABI is a multi-band sensor aboard the GOES-R series of geostationary satellites. The GOES-R series currently in-orbit 

include GOES-16 (launched as GOES-R in November 2016) operating at the GOES-East position at 75° West longitude, 

GOES-17 (launched as GOES-S in March 2018) operating at the GOES-West position at 137° West, and GOES-18 (launched 

as GOES-T in March 2022) in testing mode. Each ABI has 16 channels, ranging from the blue (0.47 µm) to thermal infrared 205 

(13.3 µm). The red channel (0.64 µm) is observed at spatial resolution of 0.5 km (subsatellite point), with blue (0.47 µm), 

Near Infrared (NIR; 0.86 µm), and SWIR (1.60 µm) bands at 1 km, with the remainder (1.37 µm, 2.26 µm, TIR bands) at 2 

km.  Note there is neither a green (~0.55 µm) nor 1.24 µm SWIR band as MODIS. Finally, since 2019, all ABIs observe using 

a scanning pattern that results in “Full Disk” (FD) images every 10 minutes. As all ABIs include blue, red, and SWIR channels 

(0.47 μm, 0.63 μm and 2.24 μm) similar to MODIS, our initial assumption is that the MODIS SRP can be used for both ABIE 210 

(on GOES-East) and ABI-W (on GOES-West).  

With that in mind, we are following the Gupta et al. (2019) approach for AHI and applying to ABI. The initial or “baseline” 

version of the DT aerosol algorithm on ABI generally follows the same logic as that on MODIS (steps A-C in Sect. 2.1). the 

DT algorithm for ABI has key differences from that used for MODIS, including: 

1) Aerosol/Rayleigh LUTs and gas corrections are pre-calculated for the ABI-specific wavelength bands, and aerosol 215 

types are assumed to have spectral refractive index with the same values as analogous wavelengths on MODIS (e.g., 

ABI → MODIS wavelengths: 0.47 → 0.47, 0.64 → 0.65, 2.26 → 2.11 μm).  

2) Different from MODIS is in creating N × N boxes of native pixels. ABI has one higher-resolution band (e.g., 0.5 km 

for the red 0.63 µm band), three middle-resolution bands (1.0 km for the blue 0.47 µm, NIR 0.87 µm, and SWIR 1.61 

µm bands), and 12 lower resolution bands (2.0 km). The red band is used for high resolution cloud masking; the other 220 

ABI bands are aggregated by 10 x 10 pixels at 1 km to create a 10 km box, unlike the MODIS algorithm, which uses 

20 x 20 pixels at 0.5 km to create the 10 km.  

3) The NDVISWIR test uses 0.86 μm rather than 1.24 μm for comparison with 2.26 μm due to the lack of a 1.24 μm 

channel and the shift of the “2 μm channel” (from 2.12 to 2.24 μm). While not as “aerosol-free”, vegetation reflects 

0.86 μm similar to 1.24 μm (Miura et al., 1998). Let us denote NDVILEO_SWIR as NDVISWIR defined in Eq. (1), and 225 

define NDVIGEO_SWIR as; 
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𝑁𝐷𝑉𝐼567_!"#$ 	= 	 (𝜌4.9:) 	– 𝜌'.'() )/	(𝜌4.9:) + 𝜌'.'() )       (8) 

For convenience, it is commonly named NDVISWIR regardless of the difference in wavelength hereafter. 

4) Cloud and ice/snow masking are modified to account for lack of 1.24 μm and some of the TIR bands.   

5) Note that the retrieval does not require a green band reflectance as input, although like MODIS, it reports “indexed” 230 

AOD at 0.55 μm.  

 

We apply this baseline GEO DT algorithm to ABI observations to derive Level 2 FD aerosol products at 10 km × 10 km 

nominal resolution, which therefore includes its own “Mean_Reflectance_Land” vector (of TOA cloud-cleared, gas-corrected 

reflectances). Nominally, ABI produces six full disk images every hour in default FD scan mode. However, to reduce data 235 

volume, we work here with one image each hour and limit to FD data collected between July 2019 to June 2020. For ABI, one 

year is sufficient to produce the necessary statistics because of ABI’s higher temporal resolution. Again, note that while the 

baseline DT-ABI algorithm uses the SRP defined by MODIS, AC of the Mean_Reflectance_Land is expected to lead to an 

improved definition of SRP for ABI.  

2.3 AERONET AOD and collocation criteria  240 

The globally distributed AERONET network has provided aerosol optical properties for ~30 years (Giles et al., 2019), and has 

increased to nearly 540 sites worldwide. The AERONET AOD dataset is widely used as ground truth for satellite retrievals 

because of its well-defined accuracy and instrument quality control. The uncertainty of an AOD measurement from a newly 

calibrated field instrument under cloud-free conditions is less than ±0.01 for wavelengths longer than 0.44 μm (Giles et al., 

2019; Eck et al., 1999). Here, we utilize the Level 2.0 all-point, sun-observed AODs provided by the AERONET Version 3 245 

algorithm and interpolate AERONET-provided spectral AODs to AOD at 0.55 µm using a quadratic fit in log-log space (Eck 

et al., 1999). The AERONET AOD at 0.55 µm is then used for two different purposes.  

 

1) The AERONET AODs are used to generate an AC-ref from MODIS and ABIE observations. In this case, data are 

adopted where AOD at 0.55 µm is less than 0.2 and Ångström exponent (AE) (0.44 – 0.675 μm) is greater than  250 

2) The AERONET AODs are also used to validate the DT-derived AOD.  

 

The 193 AERONET site are used in this study. Spatiotemporal criteria for the satellite-AERONET co-locations are as follows. 

For AC-ref calculation, AERONET observations within ±15 minutes of satellite overpass (MODIS or ABIE) are collocated 

with satellite-derived TOA reflectance within ±0.3° rectangular grid centered over an AERONET site. For the purpose of 255 

AOD validation, a temporal criterion of ±15 minutes for AERONET AOD and a spatial criterion of ±0.2° for DT AOD are 

applied.    
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2.4 Land cover type  

MODIS Land Cover Type (MCD12Q1) version 6 products provide global land cover types from the Terra and Aqua combined 

measurement at yearly interval with 500 m sinusoidal grid resolution (https://lpdaac.usgs.gov/products/mcd12q1v006/). There 260 

are Land cover indices classified from six different classification scheme. In this study, International Geosphere-Biosphere 

Programme (IGBP)’s classification (Belward et al., 1999; Sulla-Menashe and Friedl, 2018) is applied to investigate the 

changes in spectral relationship owing to land cover type. The IGBP’s index classified 16 land cover types include Forests 

(index 1-5), Shrublands (index 6-7), Savannas (index 8-9), Grasslands (index 10), Permanent Wetlands (index 11), Croplands 

(index 12), Urban and Built-up lands (index 13), Cropland/Natural vegetation mosaics (index 14), Permanent Snow and ice 265 

(index 15), Barren (index 16), and Water bodies (index 17).   

We first assign the percentage land type [%land type, hereafter] to the AC-ref derived at each AERONET site, using the same 

0.3o distance around the AERONET station as done to calculate AC-ref. For the retrieval processing, 0.1° x 0.1° gridded map 

of land cover type is derived. Detailed collocation process is explained in Sect. 5.2.1 and Sect. 6.1.  

3. Analysis of baseline DT-ABI algorithm 270 

3.1 Differences in viewing geometries  

MODIS (and its follow-on VIIRS sensors) provide global aerosol coverage, but by observing a given ground target at 

approximately the same time every day. To observe more rapid aerosol changes, as well as to characterize the aerosol diurnal 

cycle, we use imagers on GEO satellites.  However, there are great differences between the observing geometry of ABI and 

MODIS. In a sun-synchronous polar-orbiting orbit, MODIS views a given ground target from a wide variety of VZA and RAA 275 

over a period of several weeks, while SZA varies slowly. In contrast, ABI views each Earth scene from a constant VZA, while 

the sun moves from sunrise to sunset introducing a variable SZA.  Figure 1(a) maps the VZA of ABIE. which is constant for 

all FD images. On the other hand, Fig. 1(b) and (c), show that the MODIS VZA varies, even on consecutive days.  For example, 

when observing the GSFC AERONET site (red circle in Fig. 1), the VZA of ABIE is fixed at 45.42°, whereas the VZA of 

MODIS changes from 15.88° to 51.11°.  280 

Figure 2 shows frequency distributions of scattering angle, SZA, VZA, and RAA of ABIE and MODIS observation at the 

GSFC AERONET site (-76.84°E, 38.99°N). In general, ABIE measures various solar angles as it provides multiple images 

for a location throughout a day. Figure 2a shows the SZA varying from 10° (noon during the summer solstice) to 90° 

(sunrise/sunsets all year), with the most frequent observations having SZA in the range of 60°-70°. With the sun moving from 

horizon to horizon during the day, the RAAs vary from 60° to 180° with the median value of 125.8° (Fig. 2c). This is from 285 

VZA fixed at 45.42° (Fig. 2e). Thus, under the fixed VZA condition, scattering angle of ABIE measurement changes in 

accordance with the variations of solar angles.  
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Compared to ABIE, MODIS measures limited solar angles because it flies in a sun-synchronous polar orbit. As both Terra or 

Aqua observe GSFC approximately ±1.5 hours from local solar noon, neither MODIS observes sunrise or sunset (SZA = 90°). 

Thus Fig. 2(b) shows that MODIS SZA is never higher than 70° and is most commonly in the range of 20-30°, unlike ABIE 290 

SZA, which was peaked in the range of 60°-70°. The RAAs showed a bimodal distribution that peaked at 50° and 130° (Fig. 

2d) and was absent in the range between 60° and 120°. Meanwhile, MODIS measures at various VZA conditions in the range 

of 0° to 60°. Accordingly, the scattering angle of MODIS is synchronized with the VZA variation rather than the limited solar 

angle variability. Although both scattering angle distribution in Fig. 2(g) and Fig. 2(h) cover the same angular range, the main 

factor determining the variation is not the same.  295 

3.2 Bias in current ABI AOD and why we suspect surface reflectance.  

We apply the baseline DT-ABI algorithm to ABI observations on GOES-16 (ABIE) and GOES-17 (ABI-West, ABIW) from 

August to September 2019 on an hour-by-hour basis. Figure 3 displays average bias in the retrieved AOD versus AERONET 

AOD in each hour with standard deviation. Most obvious is that the DT AODs retrieved from both ABIE (Fig. 3a) and ABIW 

(Fig. 3b) show a time dependent bias variation and have a peak in the error at local noon or early afternoon.  300 

We hypothesize that the diurnal signature in bias between each ABI and AERONET arises because the viewing geometry of 

the GEO sensor has different features than from the LEO one (Fig. 2). We must remember that for GEO sensors, a particular 

ground site is always observed with the same viewing angle while the sun angles change throughout the day. ABI observes 

each ground pixel with a fixed VZA, and therefore each VZA matches up to a specific land cover type according to location. 

In contrast, since MODIS has a 16-day orbit repeat cycle (https://ladsweb.modaps.eosdis.nasa.gov/missions-and-305 

measurements/modis/), a particular ground target will be observed from a variety of viewing zenith angles, while the solar 

zenith angle is relatively constant during a season. Thus, any residual bias escaping the LEO SRP’s compensation for 

anisotropic surface reflectance by assuming a dependency on scattering angle will be averaged out over MODIS’s 16-day 

repeat cycle but be reinforced day after day with ABI. From this point of view, we suspect that while assuming that the 

scattering angle represents the anisotropic reflectance pattern may work for MODIS on average, it would induce a large bias 310 

to GEO retrievals at local noon and/or dawn and dusk This means we should consider a new SRP for ABI observations that 

covers the new geometry. We will proceed with creating this new SRP and then show that it reduces biases and mitigates the 

bias’s diurnal signature in retrieved AOD.   
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4. Atmospheric correction 

4.1 Calculating Atmospherically-Corrected reflectance (AC-ref) 315 

To develop a new SRP, we require a data set of spectral surface reflectance.  To a first approximation, the wavelength-

dependent reflectance measured by a sensor at the TOA reflectance 𝜌;∗ is the sum of contributions by the atmosphere-only 

(known as the path reflectance) and the surface-atmosphere interaction (Kaufman et al., 1997a).  

𝜌;∗ = 𝜌;= +
>%&?&@&

'

(%3,&@&
')

.            (9) 

Here, the first term 𝜌;= is atmospheric path reflectance which consists of molecular and aerosol extinction, and the second term 320 

represent interaction of atmosphere and underlying surface. 𝐹+; is normalized downward flux for zero surface reflectance, 

equivalent to the total downward transmission, and  𝑇; is total upward transmission, 𝑠; is atmospheric backscattering ratio, 

and 𝜌;, is surface reflectance.  Note that for this equation, we assume that there is no ‘extra’ radiation arising from adjacent 

scenes (e.g., clouds) and that there is no absorption by trace gases.  Also, note that this equation has been simplified for 

readability, although all terms have angular dependence. Given a radiative transfer model (RTM), knowledge of the aerosol 325 

type and loading, one can calculate all properties of the atmospheric contribution (e.g., 𝜌;=, 𝐹+;, 𝑇;, and 𝑠;).  

By rephrasing Eq. (9), surface reflectance, 𝜌;,, can be written as shown in Eq. (10).  If the 𝜌;∗ is the observation, and we 

somehow “know” the properties of the aerosol plus Rayleigh atmosphere (e.g., measured from AERONET), we can determine 

the 𝜌;, . This process is known as AC, and the 𝜌;, derived from Eq. (8) is referred to as AC-ref. 

𝜌;, 	= 	 (𝜌;∗	 −	𝜌;=)/(𝑠;(𝜌;∗ − 𝜌;=) +	𝐹+;𝑇;)         (10)  330 

The AC-ref is an estimate of that surface reflectance, obtained by using an RTM to ‘subtract’ the atmospheric contribution 

from observed TOA values. By calculating this surface reflectance in different wavelengths, we can determine the spectral 

relationships that we need for the DT aerosol retrieval algorithm.   

Let us focus on performing AC for ABIE only and compare with corresponding AC using MODIS observations over the ABIE 

domain.  We assume that the TOA reflectance is the 10 km x 10 km Mean_Reflectance_Land parameter contained in the Level 335 

2 aerosol product, which in turn corresponds to gas-absorption-corrected, cloud-masked and outlier-removed statistics of the 

original (Level 1B) spectral reflectance.  The aerosol loading (e.g., spectral AOD) is observed by AERONET, and the RTM 

assumes the “Continental” (Remer et al., 2005) model to derive the spectral path reflectance and other atmospheric terms in 

Eq. (10). This process is summarized by the flowcharts in Fig. 4. 

We need to atmospherically correct the blue, red and “2 μm” (2.11 μm for MODIS or 2.25 μm for ABIE) band to obtain 340 

surface reflectance at those wavelengths. AERONET measures AOD at several wavelengths in the visible so we calculated 

the 2nd order polynomial fit of spectral AOD between visible and SWIR channels. Interpolating AOD to the specific blue and 

red bands for MODIS or ABIE introduces minimal error. However, since there are no AERONET AOD measurements near 2 

μm, we must extrapolate. Among the 193 AERONET sites used for collocation, 169 of those sites have observations at 1.64 

μm, so can we use a second order polynomial fit to estimate AOD at 2 μm with reasonable confidence.  The second order fit 345 
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is also applied for 24 AERONET sites with the longest observation wavelength of 1.02 μm. In this case, the extrapolation may 

induce greater error in the AOD estimation. Meanwhile, we use the generic Continental (Remer et al., 2005) model that 

provides spectral scattering and absorption properties, including a one-to-one relationship between extinction at all 

wavelengths in question.  Although there are still uncertainties, by restricting the AC to situations where AOD at 0.55 µm is 

< 0.2, assuming Continental model, and extrapolating AERONET AOD where possible, we reduce the uncertainty related to 350 

aerosol model assumption for deriving AC-ref.  

Figure 5 shows scatter plots of AC-ref of different wavelengths obtained from the GSFC AERONET site from a year of ABIE 

observations. The AC-ref in the red wavelength (Fig. 5a) and blue wavelength (Fig. 5b) overall are strongly correlated with 

AC-ref in the SWIR and red, respectively, as currently assumed in the DT algorithm (Eq. 2). However, rather than being 

constant, regressions for both wavelength pairs change with SZA and correlate poorly when SZA is very high (> ~75°).  355 

4.2 Testing the AC-ref to the DT algorithm  

Here, we use the results in Fig 5, to test whether the SRPs help to improve the ABIE DT retrieval. Although the regression 

quality varies with SZA, to a first approximation we see that both red/SWIR, and blue/red vary nearly monotonically with 

SZA.  We use this relationship to determine whether an SRP that includes SZA might improve the DT retrieval, at least at the 

GSFC site.  Figure 6 shows the results of this pilot study, using these new SRPs as compared with the AOD retrieved from the 360 

baseline SRPs at GSFC. Figure 6(a) shows correlations between the DT AODs and AERONET AODs, and Fig. 6(b) represents 

the biases in DT AODs for each hour. The baseline DT AOD correlates well with AERONET AOD with correlation coefficient 

of 0.91 but is positively biased with slope of 1.44 and y-intercept of 0.01. Diurnal bias variation reveals a peak near noon time, 

like the comparison shown in Fig. 3(a).  This pilot study shows us that modification of SRPs varying with SZA mitigates the 

bias peak at noon (Fig. 6b). The new AOD shows a significant improvement in that 92.62% of retrieval falls within expected 365 

error (%EE) range (±0.05 + 15%t) (Levy et al., 2013), compared to 50.82% of the baseline AOD falling within the %EE.  

While there is circularity in this test, with validation being done with the formulation data set, there are many steps between 

formulation and validation and this test shows us (a) consistency through all those steps and (b) that changing the SRP 

assumption causes a response in the retrieval of the right order of magnitude to correct the bias.  

5. Spectral Relation Parameterization 370 

5.1 Comparison of SRP between MODIS and ABIE  

To compare this study with the SRPs used now in the current MODIS algorithm and to derive new SRPs for ABIE we return 

to the large data base of AC-ref, where at each collocation spectral AC-ref is used to calculate parameters of the spectral AC-

ref relationships.   
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On the basis of a physical connection between light absorption in visible wavelengths involved in photosynthesis and the 375 

SWIR light absorbed by liquid water in vegetation, Kaufman et al. (1997a) observed correlation between visible (red, blue) 

and SWIR surface reflectance as measured by low-flying aircraft and atmospherically corrected images from satellite and 

high-flying sensors. These correlations were presented as simple ratios (blue and red reflectance is ¼ and ½ of that in SWIR). 

With AC of early MODIS data, Levy et al. (2007b) found that regressions indicated non-zero y-intercepts.  Although it was 

poorly understood why there should be non-zero intercepts, retaining the non-zero y-offsets for the SRP improved the aerosol 380 

retrieval results.  Figure 7(a) repeats the study of Levy et al. (2007b) with more recent data (2015-2019 and over the ABIE 

region only), confirming the presence of non-zero offsets in the MODIS SRP.  Even with a much-different sampling of 

AERONET data in this (ABIE region only, different period) the overall red/SWIR and blue/red relationships are very similar 

to the earlier regressions.   

Figure 7(b) applies the same AC-ref technique but for the ABIE observations.  While the slopes and y-offsets are overall 385 

similar to those observed when regressing MODIS, there is increased scattering for both wavelength pairs, with significantly 

reduced correlation in the blue/red relationship.  

With MODIS, the variability in relationship between visible and SWIR AC-ref is controlled by parameterizing with 

NDVISWIR_LEO and scattering angle as explained in Sect. 2.1. We repeat the entirety of the Levy et al. (2007b) study with the 

newer MODIS data of the Western Hemisphere only, as well as with the ABIE data.  The results are presented in Fig. 8 and 390 

9, with panels (a) and (c) representing MODIS and panels (b) and (d) representing ABIE.  The panels in Fig. 8 show changes 

of overall ratios (forced through zero) when separated into three bins of NDVISWIR (NDVILEO_SWIR or NDVIGEO_SWIR), whereas 

the panels in Fig. 9 show the values of regression (slope and y-intercept) for each of 20 bins of scattering angle. AC-ref are 

sorted according to scattering angle, binned into equal number bins and regression parameters are calculated for each bin. The 

mean of each bin is plotted against a scattering angle. 395 

For MODIS (e.g., Fig. 8(a), 8(c), 9(a) and 9(c)), the overall patterns remain similar to the equations shown in Sect. 2.1. In Fig. 

8(a), the slope decreases from 0.60 to 0.52 with an increase of NDVISWIR from 0.25 to 0.50 like Eq. (4). The blue-red slopes 

are almost independent of NDVISWIR (Fig. 8b), as in the current DT MODIS algorithm (Eq. 4). For scattering angle, the slope 

and y-intercept change (Fig. 9a and 9c, red) with rate of decrease/increase not much different from those in Eq. (3). Note that 

the SRPs described by Eq. (3) also include a term dependent on NDVISWIR that is not explicitly accounted for in the Fig. 9 400 

analysis, so exact dependencies on scattering angle are not expected to be identical. In Fig. 9(a), we see that indeed the 

scattering angle dependence of parameters between blue and red is much weaker than their red-SWIR counterparts. In 

conclusion, we find that the SRPs derived in this study from the MODIS AC-ref data base at AERONET stations in the western 

hemisphere agrees within expectations with the dependence on scattering angle and NDVISWIR being used in the current 

MODIS DT algorithm that was derived years ago from a global database. 405 
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On the other hand, the spectral relationships of ABIE AC-ref are different from the MODIS ones. First, it is seen that the blue-

red relationship has a variability that cannot be expressed as a constant. In Fig. 8(d), slope between blue and red is significantly 410 

higher when the NDVISWIR is greater than 0.5. We also find clear scattering angle dependence in the slope and y-intercept for 

the blue-red AC-ref relationship from Fig. 9(b and d, blue). It can be presumed that the blue-red correlations show greater 

scatter in Fig. 7(b) and Fig. 8(b) due to the changes of spectral relationship with viewing geometry.  

While the change in slope between the red and SWIR AC-ref by NDVISWIR (Fig. 8b) shows the similarity with the MODIS 

relationship, in Fig. 9(b), its dependency on scattering angle presents differently. Unlike the MODIS slope that increases 415 

linearly with the increase of the scattering angle, the ABIE slope shows a weak scattering angle dependence. In particular, 

when the scattering angle is higher than ~150°, the slope is significantly lower than that of MODIS. Since the angle dependence 

shown in Fig. 9(a) is sufficiently similar to the current DT assumption, comparing Fig. 9(a) and Fig. 9(b) shows that the current 

SRP overestimates red slope and underestimates the blue slope when the scattering angle is high. This in turn leads to high 

bias in backscattered conditions near noon as shown in Fig. 3.  420 

There are multiple possibilities for the large differences between ABIE and MODIS SRP parameters. One is that the 

wavelengths are different. MODIS blue, red, and SWIR channels are centered near 0.466 µm, 0.654 µm 2.113 µm, while 

corresponding ABIE channels are centered near 0.470, 0.639 and 2.256 µm, respectively. To test the impact of the wavelength 

shift, we used surface reflectance obtained from ASTER spectral library (Baldridge et al., 2009) that includes 2300 spectra of 

a wide variety of materials covering 0.35–2.5 µm with 0.001 nm resolution. We integrated bidirectional reflectance from 340 425 

vegetation tree and 174 vegetation shrub cases for the specific wavelength pairs of each MODIS and ABI. The conclusion was 

that the wavelength shifts from MODIS to ABI results in negligible differences in red-SWIR relationship, while the blue-red 

slope decreases by 10% from 0.86 to 0.77 and the y-intercept increases from 0.001 to 0.003. These differences are not large 

enough to explain the differences between ABIE and MODIS SRP, as seen in Fig. 9.  

The second and more likely reason for the differences is that ABIE and MODIS have very different viewing geometries, as 430 

discussed in Sect. 3.1. While the scattering angle parameterization in the MODIS and baseline ABIE algorithm is meant to 

adjust the SRP parameters to account for anisotropic reflectance effects, spectral anisotropy is obviously more complex than 

can be modeled by a single parameter (e.g., Gatebe and King, 2016). ABIE’s coupling of view angle with location has 

apparently accentuated the biases remaining from the one parameter formulation, while MODIS’ mixing of view angles over 

each location has mitigated these biases. Note that Remer et al. (2001) find strong view angle dependence in observed ratios 435 

of visible to SWIR, but that averaging over the range of view angles would bring observed ratios closer to the ¼ and ½ values 

expected at the time of their study. The Remer et al. (2001) study also found dependencies on land surface type and season. 

5.2. Surface Reflectance Parameterizations for ABI-East.  

5.2.1 Land Type 

In Sect. 5, we discussed that, for ABIE observations, variability between visible and SWIR AC-ref (Fig. 7b) does not clearly 440 

depend on scattering angle. Spectral AC-ref relationships change with solar angles at a given location (e.g., Fig. 5) but appear 
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different at different sites. Therefore, we explore whether there may be other parameters to explain surface reflectance 

relationships. One possibility is to use a more explicit parameterization based on surface type.  

The DT SRP attempts to account for land cover type (and seasonal changes) using the NDVISWIR (Eq. 4) and scattering angle 

(Eq. 3) as a proxy for bidirectional reflectance. This appears to be sufficient for MODIS, where SZAs and vegetation conditions 445 

both co-vary on seasonal scales. Differences in day-to-day viewing geometry help to remove overall biases caused by the SRP.   

Nonetheless, there was enough remaining bias over non-uniform and isolated urban surfaces that the MODIS-DT retrieval 

added a correction based on urban percentage (Gupta et al., 2016).   

The ABIE geometry presents a very different problem in that every ground location is isolated – there is no ‘averaging’ of 

viewing angle. In fact, the definition of BRDF requires a fixed SZA, and that SZA varies throughout every day. Thus, unlike 450 

MODIS (or another LEO sensor), one may not be able to assume a generalized dependence on the scattering angle for all 

ground target locations.  Of course, the pathological limit is that there is a unique BRDF and functional dependence of solar 

angle at every location viewed by ABIE.  Developing this “map”, however, would be extremely expensive (time and 

computationally), and would require similar efforts to develop these descriptions for ABIW, AHI and any future regionally 

observing geostationary imagers.  Therefore, we attempt to simplify this problem by separating the globe into three canopy 455 

types (two vegetation types plus urban) that represent the darker surfaces used for DT retrieval. From there, we develop a 

three-tiered SRP and test whether that can be used for ABIE and other GEO sensors.   

According to the IGBP index, we classify surfaces dominated by deciduous or evergreen Forest (IGBP index 1 ~ 4) as Closed 

Vegetation (CV) and other vegetation (IGBP index 5~10, 12, 14) as Open Vegetation (OV). Figure 10 shows the global map 

of IGBP index and percentage of each land cover type (%land type) at 0.1 x 0.1° resolution, which are obtained from the 460 

MCD12Q1 products at 500 m resolution. By counting individual IGBP indices from all sub grid pixels, we obtain the most 

frequent IGBP index (Fig. 10a) and percentage of CV (Fig. 10b), OV (Fig. 10c) and urban (Fig. 10d) in a grid box. Using 20% 

to be the threshold that determines dominant type in the grid box, OV dominates over most of the global land mass. CV is 

dominant in 17.6% of non-water, ice-free, and non-barren pixels, and is generally concentrated near the equator. Meanwhile, 

the urban is dominant in 0.7% of the situations and is sporadically distributed. While determining the dominant type in each 465 

grid box allows us to create the global maps of Fig. 10, it is the percentage of each type in the grid box that will be used to 

weight each of the three surface reflectances corresponding to the results of the three SRP applied to each grid box with 

multiple surface types within. 

Figure 10 shows that multiple land types can exist simultaneously in a grid box in most cases where the surface properties are 

not uniform over a wide range. Since AC-ref is based on the contribution from each type, it can be assumed that the spectral 470 

AC-ref relationship is dependent on the %land type of the area for which the AC-ref is calculated, just as the urban percentage 

changes the SRP in the current algorithm. We intend to create an SRP for each land type, Open and Closed Vegetation, in the 

same manner that urban percentage is used in the current DT algorithm. We will do this in two steps. First, we develop the 

land type’s SRP. Second, we apply the new SRP to the retrieval.  
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To derive the slope and y-intercept change by % land type, the SRP analysis allows multiple land types for a single collocation 475 

and does not throw out heterogeneous conditions. Thus, an AERONET site can be assigned to different land types 

simultaneously for the derivation. For example, if we assume for the derivation that an AERONET site is covered by 20% 

urban, 50% CV and 30% OV. The Red/SWIR relationships obtained from the site then will show up in Fig. 12 b, d, and f, and 

will correspond to different x-location of 20%UP, 50%CV, and 30%OV. When the AERONET site is covered by 100% CV, 

then it will be only in Fig. 12b. In this manner, we derived dependency of spectral relationships on %land type from Fig. 12. 480 

In the retrieval process, the algorithm now assumes a homogenous surface, even when the surface is heterogeneous.  The 

algorithm reads the %land type maps (Fig. 10) and identifies the highest percentage land type in each pixel. The algorithm 

uses open vegetation by default and adjusts the SRP where the %CV or %UP is higher than the %OV. For the case of 20%UP, 

50%CV, and 30%OV case, the algorithm chooses CV and calculates the SRP for 50% CV by using the multiple linear 

regression described in Sect. 5.2.2. The contribution of the other 50% of the pixel is not considered here. Accordingly, the 485 

following unfortunate case will be possible. If the pixel is filled with 40%CV, 30%OV, and 30%urban, the pixel is identified 

as CV even though 60% of pixel is covered by other types. Ideally, a weighting function that takes into account significant 

percentages of all surface categories would be preferable and such a weighting function will be investigated in a subsequent 

study. This section describes the process of creating the SRP’s specific to each land type, leaving further description of the 

application of SRP to Section 6.1. 490 

In Fig. 11, we plot the Red and SWIR AC-ref relationship by land type. A population of AC-ref shown by gray dots were 

categorized into three group as described before, and a linear regression was fitted for each AC-refs group. AC-ref in each 

group were binned into 10 equal bins, and the mean and standard deviation of each bin was calculated and shown by colored 

circles and vertical bars. The CV is dark at both SWIR and red wavelengths and has a lower slope compared to the OV and 

urban. Meanwhile, for urban, red AC-ref to SWIR AC-ref ratio across the entire dynamic range of reflectance is higher than 495 

the other land surface types, causing a higher y-intercept than the other two groups. Since OV encompasses all the various 

land cover types that are not classified as CV or Urban and dominates the statistics, the regression of this type is similar to the 

overall correlation where no surface type is specified, as shown in Fig. 7 (b, red). In Fig. 12 we look for dependencies of the 

regression slope by plotting the slope against NDVISWIR and the different land cover type percentages. In this figure, we see 

that the slope of the CV group depends on %CV (Fig. 12b) rather than NDVISWIR (Fig. 12a), while the opposite is true for the 500 

OV group.  Again, we note that the OV group dominates the overall statistics so that we expect the parameters of the OV 

group to behave much more like the current assumptions in the algorithm than the other two groups. The urban slope decreases 

as NDVISWIR increases but increases as %urban increases. In short, in typical vegetation, slopes from the red-SWIR regression 

range between 0.4 to 0.7, and slope variability is well captured by parameterization using NDVISWIR. When the surface 

becomes even darker, as in CV, the regression loses its sensitivity to the NDVISWIR and becomes dependent on forest coverage.   505 
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5.2.2 Multiple Linear Regression for Red and SWIR relationship 

Previously, we discussed the inability to parameterize the angular dependence of the SRP with only scattering angle in the 510 

same way as is done with the current MODIS DT algorithm (Fig. 9). We also discussed that the correlation between visible 

and SWIR AC-ref obtained from ABIE varies with land cover type (Fig. 11) and investigated a dependency on NDVISWIR and 

%land type (Fig. 12). Based on the above analysis, for the red and SWIR relationship, we introduce a new SRP that takes into 

account SZA, NDVISWIR and %land types through multiple linear regression. In this way, anisotropic reflectance is 

parameterized as a function of SZA as before, but that relationship is modified simultaneously by NDVISWIR and %land. Also, 515 

the urban correction is no longer being performed as an add-on process as it is in the current MODIS DT algorithm.   

Like the current MODIS DT algorithm, this study aims to parameterize the regression coefficients of spectral relationships of 

surface reflectance. We predict the slope and y-intercept as a function of input parameters and then derive the red surface 

reflectance from the SWIR surface reflectance based on those coefficients. Table 1 summarizes the multiple linear regression 

(MLR) between input parameters and the coefficients for each land type. Each MRL coefficient listed in the table represents 520 

the change in predicted value per unit change in the predictor, holding all other input variables constant. The constant is equal 

to the predicted value when all the input parameters are zero. That is, according to the MLR coefficient, the key factor to 

change the spectral relationship is NDVISWIR for OV and urban, but it can be seen that %land type plays an important role in 

CV and urban conditions as illustrated in Fig. 12.  Note that while the MLR coefficients for SZA seem small, the value of SZA 

ranges from 0 to 70, whereas the value of NDVISWIR and %land ranges from 0 to 1.  Multiplying MLR coefficients by typical 525 

values can place the influence of SZA on the same scale as the land parameters. 

5.2.3 New SRP for Blue and Red relationship 

The Blue and Red relationship does not change significantly with land type. We account only for the NDVISWIR dependence 

and angular change which are shown in Fig. 8 and Fig. 9. The blue and red relationship is parameterized as a linear function 

of scattering angle for three NDVISWIR groups as shown in Fig. 13.  530 

In Fig. 13, the ratio of blue to red is close to 0.6 under backscattering conditions and is not significantly distinguished according 

to NDVISWIR. The blue-red relationship of the three NDVISWIR groups is differentiated in terms of dependence on the scattering 

angle. The slope decreases slightly as the scattering angle decreases when NDVISWIR is lower than 0.5, whereas when 

NDVISWIR is high, the transition from backward to forward scatter increases the slope. It is seen that the ratio is as high as 1 

under forward scattering condition. The high NDVISWIR mostly corresponds to the dense vegetation such as tropical forests 535 

and crops at their peak growth status.  The forest canopy induces shadow-driven reflectance in forward scattering, which 

darkens blue and red reflectance and consequently a 1 to 1 regression between them. 
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6. Result 

6.1. Applying the new SRP in the DT algorithm  

The newly developed SRPs are applied to the DT algorithm for ABIE, and performance is tested in terms of predicted surface 540 

reflectance and retrieved AOD. The visible surface reflectances predicted from the AC-ref at the SWIR wavelength obtained 

from ABIE observation are compared to the visible AC-ref in Sect. 6.2, and the AODs retrieved from the modified DT 

algorithm for ABIE by adopting the new SRPs are validated with AERONET AOD in Sect. 6.3.  

The ABIE-DT algorithm follows the same flow as described in Sect. 2.1 but assumes the new SRP for both red and blue 

surface reflectance estimation. As different SRP assumptions are made depending on the land cover type, a classification of 545 

land type is performed based on an ancillary map of %CV, %OV and %urban before estimating the surface reflectance. 

Considering the 10 km resolution of DT retrieval, we applied the map of %land type derived from a 0.1 x 0.1° grid box in the 

same manner as we used to produce the maps in Fig. 10. The classification process finds the %CV, %OV and %urban from 

the nearest grid box for each location, then assigns the pixel to be CV or urban if the %CV or %urban is higher than others. In 

case of equal percentage of two different type in a grid, we put priority in order of urban, CV, and OV. For example, if both 550 

%CV and %urban occupies 40% of the area respectively, the pixel is assigned as urban. If none of conditions are met, the DT 

retrieval assumes OV as the default.  

6.2. Comparison of predicted surface reflectance 

Figure 14 shows the comparison between the predicted surface reflectance and AC-ref in blue and red, respectively. It also 

compares the performance of the new SRP to that of the baseline SRP applied to the MODIS DT algorithm. In Fig. 14(a), it is 555 

seen that the baseline SRP overestimates the red surface reflectance in CV but underestimates it in OV. In urban, the predicted 

surface reflectance correlates closely with AC-ref, but with a higher root-mean-square error (RMSE) than other land types. 

The surface reflectance predicted by the new SRP (Fig. 14b) represents a smaller RMSE in CV and urban compared to the 

baseline product. It is also bringing the predicted surface reflectances closer to the atmospherically corrected values. When it 

comes to prediction of blue surface reflectance, both the baseline and new SRP produce estimated surface reflectances that 560 

underestimate AC-ref, but the new SRP lowers the RMSE relative to the original values for all land surface types.   

There is a degree of circularity in comparing the resulting estimated surface reflectances to the same data from which they 

were derived.  However, many factors come into play during the derivation and there is no guarantee that estimated reflectances 

will match the AC-ref any better than those derived from the baseline SRP.  However, the first basic step is to prove that the 

estimated reflectances do indeed match the statistics of their formulation data set.  As such the results presented in this section 565 

are a necessary but not comprehensive proof of the new parameterization. 

https://doi.org/10.5194/amt-2023-128
Preprint. Discussion started: 11 July 2023
c© Author(s) 2023. CC BY 4.0 License.



 19 

6.3. Comparison of DT-GEO AOD and AERONET AOD 

The goal of the new SRP is not to derive surface reflectance, but to improve the AOD retrieval from GEO observations. 

Therefore, we use the new SRP in the DT algorithm applied to ABIE, which provided the formulation data set, but also its 

sister sensor ABIW, which remained independent of the derivation.   570 

Figure 15 shows the new GEO DT AOD retrieval from ABIE on September 6th, 2019, with 3-hour interval between 13 and 

22 UTC. An aerosol plume crossing from north to south over Missouri is captured from the retrieval (Fig. 15. a-d), and other 

small plumes are detected around Houston and Louisiana as well. We select two AERONET sites adjacent to the aerosol path 

and compare the new AOD with the baseline AOD and AERONET AOD (Fig. 15e and f). At NEON_KONZ [39.10°N, -

96.56°E], both the baseline and the new AOD follows the decreasing AERONET AOD between 14 and 23 UTC, albeit with 575 

a positive bias.  The AOD at IMPROVE_MammothCave [37.13°N, -86.15°E] is as low as 0.1 at 13 UTC, but consistently 

increases as the aerosol plume approaches and peak at 23 UTC. Comparing the DT AODs, the new AODs are mostly lower 

than the baseline AODs, especially during local noon hours (17~19 UTC). 

The initial issue with the DT algorithm applied to ABI sensors data was shown in Fig. 3 where we noticed an overall high bias 

that became maximum at around noon.  Figure 16 illustrates the mitigation of the diurnal signature of the high AOD bias when 580 

applying the new SRP.  The red dots recreate the original diurnal pattern from Fig. 3, and the black dots are the result of the 

new SRPs.  The bias from AERONET of the new retrieved AOD is lower and less time dependent than the original. Although 

the new SRP was developed using AC-refs obtained from ABIE, applying the new SPR to the ABIW DT retrieval also 

mitigates the high AOD bias around noon as shown in Fig. 16(b). Thus, the ABIW results provide independent validation of 

the success of the new SRPs. 585 

Figure 17 displays the average bias of the retrieved AOD against AERONET at each AERONET site. Figure 17(a and b) are 

side by side comparisons of the results of the old and new SRPs, respectively for ABIE. The products of ABIW are compared 

in Fig. 17(c and d). The ABIE AOD retrieved from the MODIS DT algorithm (Fig. 17a) agree with AERONET AOD with 

differences ranging between 0.0~0.2 at most stations. The positive bias is also prominent in ABIW AOD across western North 

America. Figure 17(b and c) show that the retrievals using the new SRP decrease the bias in both ABIE and ABIW AOD. 590 

However, the GEO-DT algorithm still overestimates AOD across most of western North America and some random locations. 

At some locations across the region, a positive bias turns into a negative one, but not below -0.05.  The overall picture is one 

of improvement with stations closest to the subsatellite point with the smallest SZA at noon seeing the largest success. 

7. Discussion  

The DT algorithm does not require building a database of surface reflectance using several years of satellite observations and 595 

thus is quickly adaptable to new sensors. This is because it constrains surface reflectance dynamically in real-time. The 

constraint is based on a physical connection between light absorption in the visible and SWIR in plant leaves and bare soil. 
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The physical connection leads to empirically derived spectral relationships between surface reflectance in different bands. The 

surface reflectance parameterization (SRP) approach can be valid for any sensor. However, differences in viewing geometries 

between LEO and GEO sensors introduced an issue in the SRP parameterization. We explore this issue by calculating surface 600 

reflectance from top-of-atmosphere reflectance measured by a LEO sensor (MODIS) and a GEO sensor (ABIE) using 

atmospheric correction at AERONET sites. 

In the MODIS case, using the most recent 5 years of observations confirmed the same SRPs and the same dependency on 

scattering angle established 20 years ago. However, an assessment of ABIE AC-ref determined that the GEO SRPs were 

inconsistent with the MODIS-based SRPs. At the outset these differences could be attributed to either spectral differences in 605 

the wavelength bands of each instrument or to the viewing geometry differences between a LEO and GEO. A sensitivity study 

proved that spectral differences cannot explain the magnitude of the differences that we are seeing. However, a remarkable 

difference between the SRPs of MODIS and ABIE was seen in the dependence on the scattering angle, which suggests 

geometrical differences play a significant role. The inconsistency increases bias in visible surface reflectance when the 

scattering angle is higher than 150°. We note that for ABIE, the relative azimuth angle (RAA) range at each site spans 40o to 610 

180o.  Meanwhile, the MODIS RAAs are limited to two sectors: 40o to 70o and 120o to 150o.  For MODIS, within each sector 

the variety of VZA encountered dilutes geometrical differences for average values.  Most importantly MODIS never measures 

RAA > 150o, near the vegetative hotspot. 

The key to the differences between MODIS and ABIE is based on the fact that GEO and LEO measurements have different 

viewing geometries, and changes in scattering angles are driven by different factors in each sensor. In ABIE, solar angle varies, 615 

but VZA stays constant at each location, while MODIS measures a narrow range for solar angle while observing a wide range 

of VZA. This has two implications.  First, for ABIE, because VZA is constant at each site, geometry is convolved with surface 

characteristics such as land cover. Thus, a dependence of SRP on the scattering angle in the ABIE analysis may be a proxy for 

land cover type. Second, ABIE encounters different combinations of VZA, SZA, and RAA that MODIS never does. The 

baseline parameterization appears to continue to serve DT MODIS well, suggesting that the decreased ability of the baseline 620 

parameterization to serve ABIE may lie in the new geometrical combinations that are now appearing in ABIE. 

The connection to the vegetative hot spot as the source of the differences in the spectral relationships of MODIS and ABIE 

suggests that ignoring surface cover characteristics could be the root cause of lingering uncertainties in the MODIS DT SRP 

and the reason for ABIE’s poor performance. One way to illustrate the convolution between geometry and surface properties 

in the ABIE data is to examine in detail the situation in differing land covers. Fig.s 11 and 12 demonstrate that AC-refs 625 

classified into Open Vegetation (OV), Closed Vegetation (CV), and Urban have different spectral relationships. The regression 

coefficients between red and SWIR AC-ref vary with land cover type and show dependence according to the homogeneity of 

land cover and NDVISWIR. The blue and red spectral relationship does not differ significantly depending on the land cover, but 

unlike the DT MODIS relationship, the variability according to the NDVISWIR is evident.   

We note that even the LEO DT algorithm began to explicitly address land cover type in its SRP when that land cover was 630 

Urban beginning with Collection 6.1 but continued to group all vegetation types together.  However, with GEO, the novel 
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geometry that includes the vegetation hotspot and convolves VZA with a specific location requires separate SRP for at least 

two vegetation categories.  

8. Conclusion 

The new GEO sensors: Advanced Himawari Imager (AHI) on the Himawari satellite, the Advanced Baseline Imagers (ABIs) 635 

on the GOES- East and GOES-West sensors, the Advanced Meteorological Imager (AMI) on the Geostationary Korea Multi-

Purpose Satellite - 2A offer the aerosol community unprecedented opportunity to explore the temporal characteristics of 

aerosol with applications for air quality monitoring, resolving a developing smoke plume near its fire source, the co-evolution 

of aerosols and convective clouds on time scales of the convection and other possibilities.  However, the same robust aerosol 

product that the community has come to expect from MODIS and VIIRS must be produced from the GEO sensors.  Most 640 

importantly, any biases found in the retrieved AOD must be diurnally constant otherwise the very phenomena of interest to 

the community can be aliased by the diurnal signature in the error of the product.   

We began this study with a baseline version of the DT-algorithm for GEO sensors including ABI. This includes lookup tables 

that account for shifted wavelengths, and modifications to cloud masking due to different resolutions and missing wavelengths.   

Based on our experience with porting to VIIRS, we assumed that the SRPs used for MODIS would be appropriate for the GEO 645 

sensors.  Previous to this study, initial evaluation of the baseline GEO algorithm applied to AHI showed a correlation with 

collocated AERONET AOD and mean bias and RMSE only a little less accurate than MODIS AOD at the same stations and 

time period (Gupta et al., 2019). These were encouraging results that propelled the baseline GEO algorithm to be applied to 

ABIE and ABIW with the same SRPs and for the resulting ABI AOD to be included in a global product consisting of AOD 

derived from three GEO sensors and three LEO sensors (Gupta et al., personal communication). Initial validation of ABIE and 650 

ABIW, as part of this merged product, show overall validation statistics comparable to MODIS, especially in terms of the 

percentage within expected error (%EE), but with a higher bias (Gupta et al., personal communication).  

In this study we specifically examined the diurnal signature of differences with collocated AERONET AOD and found a 

distinctive diurnal signature of the bias with an amplitude of 0.10. The work done in the present study has focused on reducing 

the diurnal signature of the AOD bias against AERONET, which will strengthen the applicability of the DT ABI products for 655 

characterization of aerosol diurnal properties. While the baseline algorithm produces a robust and reasonable global product, 

by developing a new SRP from ABIE atmospherically corrected reflectances we may be able to cut the overall positive biases 

in half to 0.01 to 0.08 and more importantly flatten the amplitude of the diurnal signature to less than 0.05. The new SRP 

parameterization was applied to ABIE measurements, the same data set that was used for its formulation, but it was also tested 

with ABIW measurements that provide an independent verification. The ABIE results are slightly better than ABIW results, 660 

as expected, but the independent ABIW results conform to the same error bars described above: a positive bias of less than 

0.08 and a flattened diurnal signature with amplitude less than 0.05. We have not applied this new SRP to AHI or other GEO 

satellite sensors. Because AHI views a different part of the globe with different vegetation, topography and soil types than do 
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the ABI sensors, this specific parameterization fine-tuned for the Americas may not work as well for AHI’s view of Asia and 

Oceania.  With all their temporal promise, GEO sensors are essentially regional instruments by definition. It is possible that 665 

to maximize capability of each GEO sensor individual parameterizations may be necessary and regional versions of the DT 

algorithm more appropriate. A balance must be found between regional tuning and the goal of maintaining global consistency 

so as not to lose the ability to characterize the global aerosol system as a whole. 

The investigation of the validity of applying the SRPs developed here for AHI and the question of balancing regional tuning 

with a global perspective are beyond the scope of this study. For now, we have a robust algorithm for the over land retrieval 670 

of aerosol that can be applied to the ABI instruments. The algorithm’s parameterizations are based on understood physics of 

spectral light absorption and scattering by vegetative canopies. The parameterization described here will be implemented into 

the DT package, available ABI observations will be processed, and the product made publicly available. 

Data availability 

The Dark Target (DT) algorithm has been ported to ABIs and produces aerosol data as part of the NASA MEaSUREs project 675 
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via doi:10.7289/V5BV7DSR (NOAA NCEI; GOES-R Calibration Working Group and GOES-R Series Program, 2017). The 
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Table 1 Summary of new surface reflectance parameterization for DT-GEO algorithm. Multiple linear regression, which consists of 
three parameters, SZA, NDVISWIR, and % land type, predicts regression slope and y-intercept between Red and SWIR surface 790 
reflectance. The listed value refers the regression coefficient and the number in parentheses indicates 1-sigma of the coefficients. 

Closed Vegetation SZA NDVISWIR % land type Const 

Slope (1-𝜎) 
0.0015 

(0.0006) 

0.0181 

(0.0540) 

-0.0013 

(0.0003) 
0.4439 

Y-int (1-𝜎) 
-0.0002 

(0.0001) 

-0.0125 

(0.0062) 

0.0000 

(0.0000) 
0.0172 

Open Vegetation SZA NDVISWIR % land type Const 

Slope (1-𝜎) 
0.0014 

(0.0005) 

-0.4477 

(0.0563) 

0.0001 

(0.0003) 
0.6729 

Y-int (1-𝜎) 
-0.0003 

(0.0001) 

0.0411 

(0.0084) 

-0.0001 

(0.0003) 
-0.0041 

Urban SZA NDVISWIR % land type Const 

Slope (1-𝜎) 
0.0013 

(0.0006) 

-0.3890 

(0.0620) 

0.0018 

(0.0005) 
0.5976 

Y-int (1-𝜎) 
-0.0003 

(0.0001) 

0.0369 

(0.0091) 

-0.0001 

(0.0001) 
0.0024 
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Figure 1 (a) Full disk coverage of ABIE with VZA (< 72°) for each pixel and (b, c) MODIS VZAs for the same region on two 
consecutive days (Sep 01-02, 2019). The red circle indicates the location of GSFC AERONET site [-76.84°E,38.99°N]. 795 
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Figure 2 Frequency distributions of sun-and-sensor geometries for (left) ABIE and (right) MODIS measurements at GSFC 
AERONET site: (a, b) SZA, (c, d) RAA, (e, f) VZA, and (g, h) scattering angle. 
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 800 
Figure 3 Average bias of the DT AOD against collocated AERONET values retrieved from (a) GOES 16 ABI (ABIE) and (b) GEOS 
17 ABI (ABIW) from August to September 2019. The AOD biases are calculated from all available AERONET site and then 
averaged for each local solar time. The vertical bars represent 1-sigma range of the AOD bias at each time. 

(a)  (b) 
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 805 
Figure 4 Flowchart of calculating atmospherically-corrected reflectance (AC-ref). The DT-LUT was created using the RT3 code, 
assuming a black Lambertian surface.  

Level 2 TOA Reflectance 
Cloud and Gas Free, 10 x 10 km2

resolution

DT-LUT
[Blue, Red, SWIR]
RT3 Continental model

(Levy et al., 2007)

Spectral AOD fitting  based on 
Quadratic regression fit (log-log scaled) 

AERONET Lv2.0 AOD [550 nm]
AERONET AOD [550 nm] < 0.2

1 < AE [440-675 nm]

Input
TOA-ref and AOD 

set @ Blue

Data Collocation
TOA reflectance: 0.3 x 0.3-pixel average centering AERONET site
AERONET AOD : Average satellite overpass time +/- 15 minutes

Input
TOA-ref and AOD 

set @ Red

Input
TOA-ref and AOD 

set @ SWIR

AC-ref @ Blue AC-ref @ Red AC-ref @ SWIR
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Figure 5 Relationships between (a) Red and SWIR AC-ref and (b) Blue and Red AC-ref obtained from the GSFC AERONET site 810 
from July 2019 to June 2020. Color represents SZA and solid lines show linear regression for eight SZA groups. Each group has 
equal data points (144). 

 

 
Figure 6 Validation of DT AOD retrieved from ABIE at GSFC in September 2019; (a) Scatter plots between ABIE AOD and 815 
AERONET AOD and (b) diurnal changes in the bias between them. Orange and black indicate different assumption in surface 
reflectance parameterization (SRP); Orange represents the DT AOD retrieved assuming the baseline DT SRPs but blue represents 
the tested AOD adopting the SRPs obtained from the AC-ref of ABIE (Fig. 5). 

 

(a) (b) 

(a) (b) 
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 820 
Figure 7 AC-ref in the visible (0.47 and 0.66 µm for MODIS and 0.47 and 0.63 µm for ABIE) compared with SWIR AC-ref (2.12 
µm for MODIS and 2.24 µm for ABIE). The (a) MODIS AC-ref consists of 5 years of observations from 2015 to 2019 over the ABIE 
Field of View while the (b) ABIE AC-ref is for one year from July 2019 to June 2020. Blue and red indicate Red-SWIR and Blue-
SWIR relationship, respectively. 

 825 
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Figure 8 The AC-ref relationships (a, b) between red and SWIR and (c, d) between blue and red channel as a function of NDVISWIR. 
Left and Right columns indicate the relationships for MODIS and ABIE, respectively. The regression equation is forced through 
zero. Red refers to low NDVISWIR, green to medium and blue to high values. Each AC-ref group for NDVISWIR is divided equally 
into 8 bins and is displayed by mean (symbol) and standard deviation (vertical bar) of each bin.  830 
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Figure 9 Regression between visible and SWIR AC-ref of (left) MODIS and (right) ABIE. Slope (a, b) and y-intercept (c, d) of 
regression are plotted as a function of scattering angle. The data were sorted according to scattering angle and put into 20 groups 
of equal size (736 for MODIS and 3899 for ABIE). Blue square and red circle indicate red-SWIR and blue-red ratio, respectively. 

 835 
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Figure 10 A global map of (a) the most frequent International Geosphere Biosphere Program (IGBP) index within 0.1 x 0.1o grid 
box and the percentage of the sub-grid index classified into (b) Closed Vegetation, (c) Open Vegetation, and (d) Urban type. The 
IGBP index indicates 1. Evergreen Needleleaf Forests, 2. Evergreen Broadleaf Forests, 3. Deciduous Needleleaf Forests, 4. Deciduous 
Broadleaf Forests, 5. Mixed Forests ,6. Closed Shrublands, 7. Open Shrublands, 8. Woody Savannas, 9. Savannas, 10. Grasslands, 840 
11. Permanent Wetlands, 12. Croplands, 13. Urban and Built-up Lands, 14. Cropland/Natural Vegetation Mosaics, 15. Permanent 
Snow and Ice, 16. Barren, 17. Water Bodies.  
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Figure 11 Linear regressions (a) between Red and SWIR AC-ref classified into three land cover types: Closed Vegetation (CV, Red), 
Open Vegetation (OV, Green) and Urban (Black). Each AC-ref group is divided equally into 10 bins and is displayed by mean 845 
(symbol) and standard deviation (vertical bar) of each bin. The gray dot represents a population of ACref, which is not distinguished 
by land type.   

https://doi.org/10.5194/amt-2023-128
Preprint. Discussion started: 11 July 2023
c© Author(s) 2023. CC BY 4.0 License.



 37 

 
Figure 12 Change of regression slopes in the Red and SWIR AC-ref regression according to (left) NDVISWIR and (right) land type 
percentage. For each land type group of (a, b) Closed Vegetation (CV), (c, d) Open Vegetation (OV), and (e, f) Urban, AC-ref are 850 
equally divided into 216 bins according to SZA, NDVISWIR, and % land type. Vertical bar represents 1-sigma of slope. Among the 
193 AERONET sites used for the collocation, 40 sites corresponded to CV, 169 sites to OV, and 55 sites to urban.  
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Figure 13 The change of blue and red relationship with NDVISWIR and scattering angle. Color indicates NDVISWIR which is divided 
into three levels.   855 
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Figure 14 Comparisons between predicted surface reflectance and AC-ref for the (top) red and (bottom) blue channels. Left panels 
show the predicted surface reflectance achieved from the baseline DT SRP and the Right panels show the predicted surface 
reflectance using the new DT-GEO SRP. The predicted surface reflectance is sorted by AC-ref and equally divided into 10 bins. 
Symbol and vertical bar represent mean and standard deviation in each bin respectively, and color indicates land type: (red) CV, 860 
(green) OV, and (gray) Urban.  
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Figure 15 Three-hour interval map (a-d) displaying the new DT AOD retrieved from ABIE on September 6, 2019. A comparison is 
made between the new DT AOD and the baseline DT AOD as well as the AERONET AOD at two locations: (e) NEON_KONZ 
[39.10°N, -96.56°E] and (f) IMPROVE_MammothCave [37.13°N, -86.15°E]. A Black square indicates AERONET AOD [550 nm], a 865 
blue open circle represents the baseline DT AOD [550 nm], and a red closed circle denotes the new DT AOD [550 nm]. The 
AERONET sites are marked on the map with gray circle.  
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Figure 16 Comparison of the bias in the DT AOD retrieved by assuming the baseline and the new surface reflectance 
parameterization (SRP). Average biases (Black) in the new DT AOD retrieved from (a) ABIE and (b) ABIW are overlayed on the 870 
(Red) original DT AOD bias. The vertical bars represent 1-sigma range of the new AOD bias at each time. The DT AOD obtained 
from August to September 2019 across all collocated AERONET stations within the sensors’ disk scan. 
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Figure 17 Bias maps of (a, c) the baseline DT AOD and (b, d) the new DT AOD retrieved from (a, b) ABIE and (c, d) ABIW for 
August - September 2019. The bias represents the average of the absolute difference between DT AOD and AERONET AOD. 875 
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